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1. Introduction

The CSG model was first introduced independently by Lund and Regge as a model of

relativistic vortices in a superfluid [2, 3] and by Pohlmeyer in a dimensional reduction of a

O(4) non-linear σ-model [4]. It belongs to the class of homogeneous sine-Gordon theories,

which are G/U(1) gauged Wess-Zumino-Witten Models perturbed by a potential. For CSG

the group G = SU(2). More recently, the quantum case has been studied by Dorey and

Hollowood [5] and Maillet and de Vega [6]. The CSG model has been studied with a

boundary [7, 8]. Boundary conditions were found which preserved integrability and soliton

solutions were analysed.

In [1] we constructed a integrable CSG defect which we then analysed classically. It

was found that charge can be transferred to and from the defect allowing soliton absorption
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and emission processes. The classical time-delay for soliton-defect scattering was calculated

and also the reflectionless particle transmission factor was given. Using the CSG defect,

we constructed a more general CSG boundary theory by dressing the Dirichlet bound-

ary. This led to boundaries described by two parameters. As for the defect, the dressed

boundaries can allow soliton absorption and emission, and in these cases the two bound-

ary parameters are related to the charge and rapidity of the emitted/absorbed soliton. In

addition, some boundaries allow for a one-parameter family of classical bound states. The

soliton-boundary reflection time-delay was also calculated for these excited boundaries.

Most recently the CSG model has attracted some attention in the context of magnons

in string theory. The CSG equation is equivalent to the equations of motion of a string

moving on an R x S3 subspace of AdS5 x S5 [9, 10]. This equivalence is used in current work

verifying the prediction of the AdS/CFT correspondence that the spectrum of operator

dimensions in planar N = 4 SUSY Yang-Mills and the spectrum of a free strings on AdS5 x

S5 [11] are the same. Integrable boundaries have already been used in this context [12 – 14].

The complex sine-Gordon theory is a 1+1 dimensional field theory described by the

following Lagrangian

LCSG =
∂tu∂tu

∗ − ∂xu∂xu
∗

1 − λ2uu∗
− 4βuu∗ . (1.1)

Here u is a complex field, λ is the coupling constant and β the mass parameter. The

constant λ can be absorbed into u and u∗ by scaling the field, in which case it appears as

an overall factor multiplying the Lagrangian. Note that the Lagrangian has a global U(1)

symmetry, this leads to a conserved charge by Noether’s theorem.

The complex sine-Gordon equation of motion (and its complex conjugate)

∂ttu− ∂xxu+
u∗((∂tu)

2 − (∂xu)
2)

1 − uu∗
+ 4βu(1 − uu∗) = 0 (1.2)

are derived by varying the action S =
∫

dtL in the usual way. One can straightforwardly

derive the forms of the conserved energy, momentum and charge to respectively be

E =
1

λ2

∫

dx
∂tu∂tu

∗ + ∂xu∂xu
∗

1 − uu∗
+ 4βuu∗ ,

P = − 1

λ2

∫

dx
∂xu∂tu

∗ + ∂xu
∗∂tu

1 − uu∗
,

Q =
i

λ2

∫

dx
u∂tu

∗ − u∗∂tu

1 − uu∗
. (1.3)

In [1] we showed that it is possible to write the Bäcklund transformation (BT) in the form

0 =
ut − ux√
1 − uu∗

− wt − wx√
1 − ww∗ e

iα + 2
√

βδ
(

w
√

1 − uu∗ + u
√

1 − ww∗eiα
)

,

0 =
ut + ux√
1 − uu∗

eiα +
wt +wx√
1 − ww∗ − 2

√
β

δ

(

u
√

1 − ww∗ − w
√

1 − uu∗eiα
)

, (1.4)

where α is given by

α = arcsin

[

i

2

(

uw∗ −wu∗ + 2isinA√
1 − ww∗√1 − uu∗

)]

. (1.5)
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0 < a < π
2 Qsol = 1

λ2 (−4a+ 2π)

π
2 < a < π Qsol = 1

λ2 (−2π + 4a)

−π
2 < a < 0 Qsol = 1

λ2 (−4a− 2π)

−π < a < −π
2 Qsol = 1

λ2 (4a+ 2π)

� �

�

�

�π/λ�

−�π/λ�

−π
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Figure 1: Charge Q(a) of the complex sine-Gordon soliton.

Like the SG theory the CSG theory admits soliton solutions. The form of a one-soliton

solution can be found by substituting u = 0, u∗ = 0 into the BT and solving for w,

which yields

w = u1−sol =
cos(a)e2i

√
βsin(a)(t cosh(θ)−x sinh(θ))

cosh(2
√
βcos(a)(x cosh(θ) − t sinh(θ)))

. (1.6)

The parameters in the soliton solution are related to the parameters in the BT by a = A

and eθ = δ. It is noted that unlike the SG soliton the CSG soliton is non-topological. The

CSG soliton has a conserved charge due to the U(1) invariance of the theory. Classically

this charge lies can take any value in a (finite) continuous range, in contrast to the discrete

topological charge that the SG soliton holds. The energy of the soliton is always posi-

tive, while the momentum can be positive or negative. They both depend on the charge

parameter a and the rapidity of the soliton θ

Esol =
8
√
β

λ2
|cos(a)| cosh(θ) , Psol =

8
√
β

λ2
|cos(a)| sinh(θ) . (1.7)

The charge of the soliton Qsol, graphically illustrated in figure 1, is 2π periodic in a.

The next section summarises the CSG dressed boundary theory introduced in [1].

We briefly recall the use of soliton solutions in the boundary theory which describe both

scattering and also classical bound states. The classical particle reflection factor from this

boundary bound state is calculated. In the third section we review some aspects of the

quantum S-matrix in the bulk CSG theory including some analysis of the pole structure.

The fourth section contains the majority of the new work in this paper. We use semi-

classical methods to get a handle on the quantum spectrum of bound states. We use

this information to conjecture a quantum reflection matrix for the Q = +1 CSG soliton

(or particle) from the unexcited boundary consistent with the classical particle reflection

factor. By implementing the reflection and boundary bootstrap, we generate the general

quantum reflection matrix for any charged CSG soliton from any excited boundary. In

– 3 –
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Figure 2: Dressed boundary model set up.

the following section we offer some analysis and explanation for the pole structure in the

quantum reflection matrices.

In the final section, we summarise the work covered and provide some discussion and

thoughts about future directions.

2. Complex sine-Gordon dressed boundary

In [1] we constructed a new CSG boundary by placing an integrable CSG defect in front of a

Dirichlet boundary and moving the defect up to the boundary to create the dressed bound-

ary.

The dressed boundary theory is described by the Lagrangian

L =
1

λ2

∫ 0

−∞
dx

∂tu∂tu
∗ − ∂xu∂xu

∗

1 − uu∗
− 4βuu∗ +

1

λ2

[

A1∂tu+A2∂tu
∗ − Ldb

]
∣

∣

x=0
,(2.1)

with the standard bulk Lagrangian and a boundary piece made up of a boundary potential

term and terms in linear in the time derivative of the field. The boundary terms are

Ldb = 2
√

β

(

δ +
1

δ

)

cos(α′)
√

1 − uu∗ , A1 = − i

u
α′ , A2 =

i

u∗
α′ , (2.2)

where

α′ = arcsin

( −sinA√
1 − uu∗

)

. (2.3)

Varying the action gives the dressed boundary conditions

∂xu = −∂tu i tan(α′) +

√
β

cos(α′)

(

δ +
1

δ

)

u
√

1 − uu∗ ,

∂xu
∗ = ∂tu

∗ i tan(α′) +

√
β

cos(α′)

(

δ +
1

δ

)

u∗
√

1 − uu∗ , (2.4)

which depend on the two parameters δ ,A that appear in the CSG BT. The conservation

of the energy

Edb =
1

λ2

∫ 0

−∞
dx

∂tu∂tu
∗ + ∂xu∂xu

∗

1 − uu∗
+ 4βuu∗ +

1

λ2

[

2
√

β

(

δ +
1

δ

)

cos(α′)
√

1 − uu∗
]∣

∣

∣

∣

x=0
(2.5)
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and charge

Qdb =
i

λ2

∫ 0

−∞
dx

u∂tu
∗ − u∗∂tu

1 − uu∗
+

1

λ2

[

2α′]∣
∣

x=0
, (2.6)

can be easily checked. As is usual for boundary theories there is no conserved momentum.

In [1] we showed that the lack of conserved momentum does not stop the theory from

being classically integrable, by explicitly constructing the next higher-spin energy-like con-

served charge.

We continue by introducing the different soliton solutions in the dressed boundary

theory. The vacuum of the dressed theory is u = 0, with energy and charge

Evac =
2
√
β

λ2

(

δ +
1

δ

)

cos(α0) ,

Qvac =
2α0

λ2
, (2.7)

where α0 = α′(u = 0). The energy and charge of the vacuum depend on the two parameters

that appear in the BT and explicitly on α0. This α0 dependence means that the dressed

boundary can have different values of energy and charge for the same values of δ and

A. Whether the energy of the dressed boundary is positive or negative determines its

properties. Namely it is found that if the boundary has positive energy then it can emit

a soliton and negative energy boundaries can absorb a soliton [1]. We found that solitons

which do not have their parameters matched with the boundary and are therefore not

absorbed, reflect from the boundary with the non-zero time-delay

∆t =
1

2
√
βcos(a)sinh(θ)

ln

∣

∣

∣

∣

∣

∣

sinh
(

θ−χ
2 + ia−A

2

)

sinh
(

θ+χ
2 + ia−A

2

)

cosh
(

θ−χ
2 + ia+A

2

)

cosh
(

θ+χ
2 + ia+A

2

)

∣

∣

∣

∣

∣

∣

, (2.8)

where δ = eχ and phase shift

eiφ = −
(

δ + eiAeθeia

eθeia − δeiA

)(

1 + δeiAeiaeθ

eiA − δeθeia

)

e2
√

β(sinh(θ+ia)∆t . (2.9)

Both the emission and absorption processes appear as limits of the classical time-delay.

The CSG particle also reflects from the dressed boundary with the reflection factor

Rparticle =
2i sinh(θ + iA) + (δ + 1

δ
)

2i sinh(θ − iA) − (δ + 1
δ
)
. (2.10)

This particle reflection factor can also be obtained as the a = π
2 limit of the soliton reflection

phase factor.

We found that there exists classical dressed boundary bound states. These can be

constructed by solving the boundary conditions with a stationary soliton solution, (1.6)

with θ = 0, in the bulk with its position shifted x → x − c. We find that the boundary

conditions are satisfied when
(

δ +
1

δ

)

= 2
cos(a)sinh(C)

√

cos2(A)cosh(C)2 − cos2(a) + sin(a)sin(A)cosh(C)2

cosh(C)2 − cos2(a)
,

(2.11)
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where C = 2
√
βcos(a)c. This constraint is only valid when the argument in the square

root is greater than zero and

1

2

(

δ +
1

δ

)

∈
[

min {− cos(A+ a), cos(A− a)} , max {− cos(A+ a), cos(A− a)}
]

, (2.12)

which implies that δ is a pure phase within the range specified. We can solve the con-

straint (2.11) to find

tanh(2
√

β cos(a)c) = ±(cos(b) sin(a) − sin(A))

cos(a) sin(b)
, ±i tan(a) , (2.13)

with the last two solutions discounted as they infer c is complex. Here we have defined b

through the relation 1
2(δ+ 1

δ
) = cos(b). There are therefore two positions where the bound

soliton can be placed for the boundary conditions to be satisfied, and these are related by

the parity transformation x → −x. To understand these solutions, it is useful to rewrite

the boundary conditions (2.4) in the form

√

cos(A) − uu∗ ∂xu = ∂tu i sin(A) +
√

β

(

δ +
1

δ

)

u(1 − uu∗) . (2.14)

Using the expression (2.13) for tanh(2
√
β cos(a)c), it is easy to show that

√

cos(A) − uu∗ = ±(cos(b) sin(a) − sin(A))

sin(b)
(2.15)

and for the boundary condition (2.14) to be satisfied, the signs in (2.13) and (2.15) must

be correlated. Thus the two solutions for the position of the soliton correspond to different

choices of the sign of the square root in the boundary conditions (2.14). The same square

root appears in the boundary Lagrangian, and thus the two different solutions correspond to

bound states of different boundaries. We calculate the energy and charge of the bound state

by substituting the stationary soliton solution into the total energy (2.5) and charge (2.6)

respectively and simplify using the two valid solutions for tanh(2
√
β cos(a)c) to give

E±
bs = 4

√

β (|cos(a)| ± sin(A) sin(b)) ,

Q±
bs = Qbulk ± 2

(

b− π

2

)

, (2.16)

where

Qbulk =



















2a− π ; π
2 < a < π

π − 2a ; 0 < a < π
2

−2a− π ; −π
2 < a < 0

2a+ π ; −π < a < −π
2



















. (2.17)

2.1 Particle reflection from bound state

In this section we calculate the classical particle reflection factor from the dressed boundary

bound state. Later we shall demand that our conjectured quantum reflection factors tend

to these in the classical limit. To find the classical reflection factor, we begin by finding the

– 6 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
8

solution for a small perturbation around a stationary soliton solution, for a right-moving

plane wave

eR(x, t) = f(x)e−2i
√

β(cosh(θ)t−sinh(θ)x)e4i
√

β sin(a)t + gR(x)e2i
√

β(cosh(θ)t−sinh(θ)x) , (2.18)

where

f(x) =
1

cosh2(2
√
β cos(a)x)

,

gR(x) = c1 + c2 tanh(2
√

β cos(a)x) +
1

cosh2(2
√
β cos(a)x)

(2.19)

and

c1 = −2i(eθeia − eθ − ieia − i)(eθeia + eθ − i+ ieia)eia

eθ(eia − i)2(eia + i)2
,

c2 = −2i(eθ + 1)(eθ − 1)eia

eθ(eia − i)(eia + i)
. (2.20)

Similarly for a left-moving plane wave

eL(x, t) = f(x)e−2i
√

β(cosh(θ)t+sinh(θ)x)e4i
√

β sin(a)t + gL(x)e2i
√

β(cosh(θ)t+sinh(θ)x) , (2.21)

where

gL(x) = c1 − c2 tanh(2
√

β cos(a)x) +
1

cosh2(2
√
β cos(a)x)

. (2.22)

By substituting a small perturbation around the stationary soliton into the boundary

conditions we find the linearised boundary conditions around the bound state. This is

a differential equation in the linearised bulk solution involving the one-soliton solution

bound to the boundary. The linearised solution which represents a particle reflecting off

the boundary bound state is of the form

E(x, t) = eR(x− c, t) + ρ eL(x− c, t) , (2.23)

where c is the position of the bound soliton determined by (2.13). ρ is a constant which

can be found by demanding that the perturbation E(x, t) satisfies the linearised boundary

conditions. By inspecting the x → −∞ limit of the resulting plane wave solution, the

classical reflection factor is found to be

Rbs =
(eθ + ieibeiA)(eiAeθ − ieib)(eθeia − i)2

(eibeθeiA − i)(ieiA + eibeθ)(ieia + eθ)2
. (2.24)

2.2 Descriptions of charged boundaries

We begin our examination of the spectrum of boundaries by comparing the two descriptions

for charged boundaries. For the CSG dressed boundary, both unexcited boundary with

the properties (2.7) and the boundary bound states with the properties (2.16) can carry

charge. One idea is that these might provide two alternative descriptions for a single tower
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a
K3 K2 K1 0 1 2 3
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(a)

a
K3 K2 K1 0 1 2 3

K1.0

K0.5

0.5

1.0

(b)

Figure 3: Plots of cos(b), cos(A− a), − cos(A+ a), for (a) A = 0, b = π

3 , (b) A = π

8 , b = π

3 .

of charged boundary states. However this turns out not to be the case. Despite having

the freedom to set the charge and energies of unexcited and boundary bound states to

coincide, we find that the particle reflection factors do not then coincide. We conclude that

the unexcited boundary and bound state are not the same object, expect in particular cases.

As an example of such a coincidence, consider the unexcited boundary with charge Q

which is described by the charge parameter A = −Q
2 . If we consider a bound state (using

E+
bs and Q+

bs (2.16)) described by the same A with 0 < a < π
2 then the bound state has

charge Q when a = b+A and the energy

E+
bs = 4

√

β (cos(b+A) + sin(A) sin(b)) = 4
√

β cos(A) cos(b) , (2.25)

equals the energy of the unexcited boundary. We find that the particle reflection factors

also agree in this limit. Therefore the bound state and unexcited boundary are the same

object when the charge parameter of the bound soliton is the specific value a = A + b.

There is a similar limit when using E−
bs and Q−

bs (2.16), in this case to bound state reduces

to the unexcited boundary when a = A− b.

To understand these limits we analyse the bound state solutions. We reinterpret the

allowed range of values for cos(b) (2.12) as a constraint on the charge parameter a of the

bound soliton. Figure 3 illustrates the values of a for two boundaries, with the dotted line

on the figures cos(b) and the two solid curves cos(A−a) and − cos(A+a). Classical bound

states exist for the values of a when the two curves lie either side the dotted line. For

both boundaries there are two separate regions, we concentrate on the region that includes

a = 0. Figure 3(a) shows that there exists bound states if −π
3 < a < π

3 for the boundary

described by A = 0, b = π
3 . Similarly, figure 3(b) shows that there exists bound states if

−π
3 + π

8 < a < π
3 + π

8 for the boundary described by A = π
8 , b = π

3 . We note that both

ranges are between A+ b and A− b, which are precisely the values where the bound state

reduces to the unexcited boundary.

Figure 4 plots the function tanh(2
√
β cos(a)c) when the plus solution in (2.13) is used

for two particular choices of boundary parameters. It shows that in both cases, as a→ A+b,

the bound soliton is positioned away at positive infinity c→ +∞ whilst as a→ A− b the

bound soliton approaches negative infinity. On the other hand figure 5 illustrates the

– 8 –
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Figure 4: Plots of tanh(2
√
β cos(a)c) using plus sign with β = 1 for (a) A = 0, b = π

3 , (b)

A = π

8 , b = π

3 .
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K1.0
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(a)
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K0.5 0 0.5 1.0

K1.0

K0.5
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Figure 5: Plots of tanh(2
√
β cos(a)c) using minus sign with β = 1 for (a) A = 0, b = π

3 , (b)

A = π

8 , b = π

3 .

behaviour of tanh(2
√
β cos(a)c) when the minus solution in (2.13) is used. The figure

shows that in both examples the bound soliton is positioned away at negative infinity

c → −∞ when a = A + b and positioned at positive infinity when a = A − b These

figures illustrate that in both charge limits where the bound state reduces to the unexcited

boundary, the bound soliton is positioned at right infinity behind the boundary. As the

charge parameter moves away from the unexcited boundary limit, either decreasing from

a = A+ b or increasing from a = A− b, the bound soliton moves from right infinity to left

infinity when it reaches the other end of the range. The soliton being positioned at right

infinity and hidden behind the boundary, fits with the fact that the bound state reduces to

the unexcited boundary when the soliton is in this position. In figures 6 and 7 we graph the

energy and charge for the bound states in the range of a where the constraint is satisfied,

using both forms of the energy and charge. They show that the energy and charge are

simply shifted by a constant between the different energy and charge formulae. In both

examples the energy increases from both ends of the classical region with the maximum

energy of the bound state at a = 0. The charge of the bound state increases as a decreases

from A+b, but the charge decreases when a increases from A−b. This conflicting behaviour

– 9 –
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(a) (b)

Figure 6: Charge (dotted) and energy (solid) of bound states with β = 1 for A = 0, b = π

3 using

(a) E+ , Q+ (b) E− , Q−.

(a) (b)

Figure 7: Charge (dotted) and energy (solid) of bound states with β = 1 for A = π

8 , b = π

3 using

(a) E+ , Q+ (b) E− , Q−.

suggests the two ends of the region, despite both limiting to an unexcited boundary when

one of the energy formulae is used, have some different properties. We come back to this

point later in the paper.

To complete the analysis of the classical bound states we examine one further example

with A = π
4 , b = π

8 . In figure 8 the energy and charge are plotted for two different energy

and charge formulae. We note that in figure 8(b) that as the bound soliton moves out from

right infinity, this corresponds to the charge parameter increasing from A− b, the energy

of the bound state decreases. This is the case because A− b > 0 and as with the previous

examples the energy would reach its maximum at a = 0 and therefore the energy is still

increasing, from right to left, at a = A− b.

Analysis of the particle reflection factor (2.10) shows that it has two poles at

θ = A+ b− π

2
, A− b− π

2
, (2.26)

which correspond respectively to the field taking the values

u = ǫ e−2i
√

β sin(A−b)t e2
√

β cos(A−b)x , ǫ e−2i
√

β sin(A+b)t e2
√

β cos(A+b)x . (2.27)
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Figure 8: Charge (dotted) and energy (solid) of bound states with β = 1 for A = π

4 , b = π

8 using

(a) E+ , Q+ (b) E− , Q−

for infinitesimal ǫ. These suggest the existence of bound states when the bound soliton has

either charge parameter a = A+ b or a = A− b. This is in agreement with our analysis of

bound solitons; the above exponential solutions correspond to the tails of bound solitons

which are hidden far behind the boundary at right infinity. This concludes the analysis of

classical solutions to the CSG dressed boundary theory.

3. Quantum CSG bulk theory

We begin by reviewing quantum aspects of the bulk theory. The quantised bulk theory

was first considered by Maillet and de Vega [6], with the results reviewed and expanded

on by Dorey and Hollowood [5] to the point where they conjecture a S-matrix to describe

the quantum scattering of charged solitons in CSG theory. The next section deals with the

semi-classical results, with the S-matrix introduced in the following section.

3.1 Semi-classical quantisation

To begin the discussion a few properties of the CSG soliton (1.6) are noted. As already

commented on the CSG soliton rotates in the internal U(1) space with the constant angular

velocity w = 2
√
βsin(a). We re-express the energy

E(w) =
8
√
β

λ2

√

1 − w2

4β
cosh(θ) = E(0)

√

1 − w2

4β
, (3.1)

and charge

Q(w) =
4

λ2
arccos

(

w

2
√
β

)

, (3.2)

of the soliton in terms of its angular velocity. These expressions highlight the property

that the energy and charge of the soliton decreases as the angular velocity in the internal

space increases. When the angular velocity reaches its maximum w = 2
√
β, the energy

and charge vanish but also in this limit the soliton is damped to zero by the cos(a) factor.

– 11 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
8

Due to the periodic time-dependent nature of the stationary soliton solution

ustat
1−sol =

cos(a)e2i
√

βsin(a)t

cosh(2
√
βcos(a)x)

, (3.3)

the Bohr-Sommerfeld Quantisation (B-S) condition

S[u] + E[u]τ = 2πn , (3.4)

can be applied [15, 16]. Where n ∈ Z, S is the action functional, E the energy and τ = 2π
w

the period of the solution u. Using the explicit form of the stationary soliton (3.3) the left

hand side of the B-S condition becomes

8βsin2(a)
π√

βsin(a)

∫ 0

−∞
dx

uu∗

1 − uu∗
, (3.5)

which is proportional to the charge of the stationary soliton (1) and the B-S condition

reduces to

2πQ = 2πn . (3.6)

Hence the charge is restricted to integer values Q = ±1, ±2, . . . ,±N = ±⌊2π
λ2 ⌋. The

classical charge formula, illustrated in figure 1, shows the multi-valued nature of the charge

when a = 0. Dorey and Hollowood [5] resolve this issue by stating that the charge should

be identified mod 2N . More generally only specific values of the coupling constant should

be considered λ2 = 4π
k

, where k ∈ Z > 1 and the charge is now identified mod k. The

spectrum of the charge becomes

Q = 0, ±1, ±2, . . . , ±k
2

k even ,

Q = 0, ±1, ±2, . . . , ±k − 1

2
k odd . (3.7)

If k is even then the solitons with charge Q = ±k
2 are identified, but if k is odd then

no solitons are identified. However when incrementing up from Q = +1 in single units

of charge the step from Q = k−1
2 leads to Q = −k−1

2 , from where it continues up to the

Q = −1. Figure 9(a) shows the case when k is even and figure 9(b) when k is odd. These

two cases illustrate why the coupling constant λ is restricted in the way it is.

The quantisation of the charge can be equivalently described as the quantisation of

the soliton charge parameter

a =
π

2
− nπ

k
, (3.8)

where n is the charge of the soliton. This gives the semi-classical energy spectrum of the

stationary soliton with the charge n soliton having the energy

En =
2
√
βk

π
sin

(nπ

k

)

. (3.9)

Maillet and de Vega [6] computed the one-loop corrections to this energy spectrum. They

found these corrections were obtained by a renormalisation of the coupling constant

λ2 → λ2
R =

4πλ2

4π − λ2
, k → kR = k − 1 . (3.10)
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Figure 9: The quantisation of the charge of a CSG soliton.

3.2 Quantum CSG S-matrix

In this section we review the conjectured exact form for the CSG S-matrix by Dorey and

Hollowood [5]. From this point the coupling constant k will be taken to be the renormalised

kR. The S-matrix which describes the scattering of two charged solitons is given as

SQ1,Q2
(θ) = FQ1−Q2

(θ)

[

Q2−1
∏

n=1

FQ1+Q2−2n(θ)

]2

FQ1+Q2
(θ) , (3.11)

where

Fx(θ) =
sinh

(

θ
2 + iπx

2k

)

sinh
(

θ
2 − iπx

2k

) . (3.12)

It is constructed from products of F factors so it automatically satisfies the analyticity

and unitarity Fx(θ) Fx(−θ) = 1 constraints. Each of the F factors has a pole at θ = iπx
k

.

This S-matrix is the minimal choice which has the correct pole structure, explicitly poles

are expected at the rapidities where the scattering solitons form bound states. Charge

conservation suggests that two solitons with charge Q1 and Q2 bind to form solitons with

charge Q1 ±Q2 in the forward and crossed channels respectively. Other poles are expected

to coincide with processes introduced by Coleman and Thun [17].

CSG solitons only form bound states when they have very specific relative rapidity.

For example, two charge Q = +1 solitons bind together to form a charge Q = +2 soliton

when they have the relative rapidity 2iπ
k

. Figure 10(a) shows two such Q = +1 solitons

with rapidities ± iπ
k

joining to become a stationary Q = +2 soliton. In this figure and all

the ones to follow time flows up the diagram. We substitute the required charge parameters

into the energy formula for the soliton, namely a = π
2 − π

k
for the charge Q = +1 solitons

and a = π
2 − 2π

k
for the charge Q = +2 soliton and use the double angle formula to show

that energy is conserved for these rapidities

8
√

β cos
(π

2
− π

k

)

(

cosh

(

iπ

k

)

+ cosh

(−iπ
k

))

= 8
√

β cos

(

π

2
− 2π

k

)

cosh(0) . (3.13)
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Figure 10: The fusing of (a) two Q = +1 solitons, (b) a Q = +n and Q = +m soliton.
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Figure 11: Formation of (a) Q = +2 soliton in forward channel, (b) Q = n+ 1 soliton in forward

channel, (c) Q = n− 1 soliton in cross channel.

Similarly as shown in figure 10(b), two solitons of charge Q = +n and Q = +m fuse

to form a bound state of charge Q = n + m at the relative rapidity i(n+m)π
k

. Note that

the relative rapidity is always imaginary and in the physical strip 0 < Im(θ) < π. The

scattering solitons can be given real rapidity, but they must be equal. For example two

Q = +1 solitons with rapidities ψ ± iπ
k

fuse to form charge Q = +2 soliton travelling with

real rapidity ψ.

The S-matrix (3.11) describing the scattering of two charge Q = +1 solitons is

S1,1(θ) = F0(θ) F2(θ) = F2(θ) . (3.14)

The F2(θ) factor has a pole at θ = 2iπ
k

which corresponds to the formation of a charge

Q = +2 soliton in the forward channel, illustrated in figure 11(a). Similarly the scattering

of charge Q = +1 and Q = +n soliton is governed by the S-matrix

Sn,1(θ) = Fn−1(θ) Fn+1(θ) , (3.15)
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Figure 12: Formation of (a) Q = Q1 +Q2 soliton in forward channel, (b) Q = Q1 −Q2 soliton in

cross channel, (c) Process with intermediate states of charge Q1 − n and Q2 − n, which results in

a double pole due to the two on-shell internal loops.

where both of the F factors have poles which correspond to the formation of bound states.

As before in the forward channel process, illustrated in figure 11(b) and also in the cross

channel shown in figure 11(c).

The general S-matrix governing the scattering between two solitons of charge Q = Q1

and Q = Q2 , where Q1 ≥ Q2, has simple poles in the forward and cross channels, shown in

figures 12(a) and 12(b) and extra double poles due to Coleman-Thun processes illustrated

in figure 12(c). There are Q2 − 1 such processes as the stationary intermediate soliton can

have charge Q = n = 1 → Q2 − 1. In two-dimensions these processes result in double poles

due to the two on-shell internal loops.

This concludes the review of the quantum CSG theory in the bulk. We shall use similar

techniques and some of the results in the following sections to investigate quantum aspects

of the CSG dressed boundary theory.

4. Quantum CSG dressed boundary

We start this section by applying a semi-classical method on the bound state to investigate

the spectrum of boundaries. The classical bound state solution is periodic therefore, as

for the periodic soliton solution, the Bohr-Sommerfeld quantisation condition (3.4) can be

applied. Using the form of the dressed boundary action (2.1) and energy (2.5) the left hand

side of the B-S condition becomes

S + Eτ =

∫ τ

t=0
dt

∫ 0

−∞
dx

2∂tu∂tu
∗

1 − uu∗
+

[

A1ut +A2u
∗
t

]∣

∣

x=0
. (4.1)

The computation on the bulk part of this expression works in identical fashion to the

calculation for the soliton solution. The boundary term becomes

∫ τ

t=0
dt 4

√

β sin(a)α′ = 4πα′ , (4.2)

using that the period is τ = π√
β sin(a)

and that α′ has no time-dependence when u is the

stationary soliton solution. As for the bulk piece we find this boundary term to be equal
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to 2π times the boundary term of the charge. Therefore the B-S condition for the dressed

boundary bound state becomes

Scl[ucl] + Ecl[ucl]τ = 2πQbs = 2πn , (4.3)

implying that the charge of the bound states is quantised Qbs = n. We recall that there are

two formulae for the energy and charge of the bound states (2.16), in this initial analysis

we use E+
bs and Q+

bs which limits to the unexcited boundary when a = A + b. We can

reinterpret this quantisation of the bound state charge as a quantisation condition on the

charge parameter a of the bound soliton, when cos(a) > 0

a = b− 2πn

k
, (4.4)

giving an approximation to the energy spectrum

E+
n =

k
√
β

π

(

cos

(

b− 2πn

k

)

+ sin(A) sin(b)

)

. (4.5)

The energy difference between consecutive states becomes

E+
n+1 − E+

n =
k
√
β

π

(

cos

(

b− 2π(n + 1)

k

)

− cos

(

b− 2πn

k

))

, (4.6)

which we rewrite as

E+
n+1 − E+

n =
2k

√
β

π
cos

(π

2
− π

k

)

cos
(π

k
(2n+ 1) +

π

2
− b

)

. (4.7)

We note that this is the same as the energy formula for a charge Q = +1 soliton

Esol(Q = +1) =
2k

√
β

π
cos

(π

2
− π

k

)

cosh(θ) , (4.8)

with the imaginary rapidity

θ = i
(

b− π

k
(2n+ 1) − π

2

)

. (4.9)

This suggests that the charge Qbs = n + 1 bound state can be generated by a Q = +1

soliton fusing with the charge Qbs = n bound state at this specific rapidity. This semi-

classical energy difference agrees with the classical energy curves in figures 6(a), 7(a), 8(a),

where the energy increases as the charge increases with a decreasing from A+ b.

In section 2.2 we found that the unexcited boundary of Q = +N appears as the limit

of the bound state where the bound soliton is pushed away to right infinity and has the

charge parameter a = A+b. The unexcited boundary is described by the charge parameter

A = −2Nπ
k

and since the bound state charge is quantised and the unexcited boundary can

be thought of as a bound state, a quantisation condition on A is implied. Therefore the

unexcited boundaries can have charge Q = N ∈ Z where −k
2 ≤ N ≤ k

2 . In the following

analysis we denote an unexcited boundary with charge Q = N as N(0).
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Figure 13: (a) Charge Q = +1 soliton fusing to charge Q = +N boundary, (b) Charge Q = +n

soliton fusing to charge Q = +N boundary.

Since the unexcited boundary can be described as a particular limit of the bound state,

the energy difference formula (4.6) should hold between the unexcited boundary and the

first excited bound state. We denote the first excited state above a Q = N unexcited

boundary as N(1) and more generally denote the mth excited state by N(m). We consider

the process where a charge Q = +1 soliton fuses with an unexcited boundary of charge

Q = +N to form the first excited bound state with charge Q = N + 1. The process is

shown in figure 13(a). A soliton with charge Q = +1 is described by asol = π
2 − π

k
and

therefore has energy

Esol =
2k

√
β

π
cosh(θ) sin

(π

k

)

. (4.10)

The charge Q = +N unexcited boundary has energy

E =
k
√
β

π
cos(b) cos

(

2πN

k

)

. (4.11)

while the bound state with charge Q = N + 1 implies that the bound soliton is described

by

a = b+A− 2π

k
(4.12)

and the bound state has the energy

E+
bs =

k
√
β

π

(

cos

(

b− 2π

k
(1 +N)

)

+ sin(A) sin(b)

)

. (4.13)

This fusion process is set up so that charge conservation is automatically satisfied, while

energy conservation requires the fusing soliton to have the rapidity

θ = i
(

b− π

k
(1 + 2N) − π

2

)

. (4.14)

This fusing rapidity agrees with the rapidity from the semi-classical energy difference (4.9)

with n = N . The fusion of a charge Q = +1 soliton then has the affect of shifting the
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charge parameter of the stationary soliton in the bound state from

a0 = b+A→ a1 = a0 −
2π

k
. (4.15)

The quantisation of the bound soliton’s charge parameter (4.4) shows that this sequence

continues with an+1 = an− 2π
k

. The semi-classical energy spectrum suggest that the fusion

process can be repeated. Namely a Q = +1 soliton can fuse with the first excited boundary

with charge Q = N + 1 at the rapidity

θ = i
(

b− π

k
(3 + 2N) − π

2

)

. (4.16)

Continuing the process a Q = +1 soliton can fuse with the mth excited boundary with

charge Q = N +m at the rapidity

θ = i
(

b− π

k
(1 + 2m+ 2N) − π

2

)

, (4.17)

to form a higher bound state with charge Q = N +m+ 1.

As a generalisation to the process in figure 13(a), the fusion of a charge Q = n can be

considered shown in figure 13(b). We find that the rapidity at which this process occurs is

θ = i
(

b− π

k
(n+ 2N) − π

2

)

, (4.18)

resulting in the same excited boundary than if n Q = +1 solitons had been consecutively

fused, or in fact any combination of solitons whose charge sum to n. The analysis of these

fusion processes show that when using E+
bs, Q

+
bs the fusion of a soliton steps the bound

soliton charge parameter a down from a = A + b in quantum steps and the energy and

charge of the bound states increase up the curves illustrated in figures 6(a), 7(a), 8(a).

Closer inspection shows that the energy only increases up to a = 0. We come back to this

point later in the paper.

Similarly we can repeat the analysis using E−
bs, Q

−
bs (2.16), starting by applying the

B-S condition to the charge formula Q−
bs which implies the quantisation condition on a, for

cos(a) > 0

a = −b− 2πn

k
, (4.19)

giving the energy of the charge n state to be

E−
n =

k
√
β

π

(

cos

(

b+
2πn

k

)

− sin(A) sin(b)

)

(4.20)

and the semi-classical energy difference

E−
n−1 − E−

n =
k
√
β

π

(

cos

(

b+
2π(n − 1)

k

)

− cos

(

b+
2πn

k

))

= −2k
√
β

π
cos

(π

2
− π

k

)

cos
(π

k
(2n − 1) +

π

2
+ b

)

, (4.21)

which corresponds to the negative of the energy of a Q = +1 soliton with rapidity

θ = i
(π

k
(2n− 1) +

π

2
+ b

)

. (4.22)
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Figure 14: (a) Charge Q = +1 soliton emitting from charge Q = +N boundary, (b) Charge

Q = +n soliton emitting from charge Q = +N boundary.

For this choice of energy and charge formulae the bound state reduces to the unexcited

boundary when a = A − b, which is at the left hand edge of the allowed classical region.

Therefore to step into the allowed region the charge parameter has to increase and this

coincides with a decrease in the charge, shown in figures 6(b), 7(b), 8(b), the energy can

increase or decrease.

For a choice of parameters (A, b) such as in figure 8(b), increasing the value of a from

A− b to A− b+ 2π
k

decreases the charge and energy of the boundary state whilst moving

the bound soliton away from right infinity. This can be interpreted as the emission of a

charge 1 soliton (or particle) from the unexcited boundary at rapidity given by (4.22). This

is illustrated in figure 4. This process is also possible for higher charged solitons at the

rapidity

θ = i
(π

k
(2N − n) +

π

2
+ b

)

. (4.23)

This behaviour is the opposite of the fusion processes described earlier. The difference is

due to the bound state charge increasing when a decreases from A+b and decreasing when

a increases from A− b. In the next section we use the semi-classical energy spectrum (4.6)

and fusing angles (4.17) to help determine the fully quantum reflection matrices.

4.1 Dressed boundary bootstrap

The procedure to generate quantum reflection matrices for charged CSG solitons from the

dressed boundary is to first conjecture the reflection matrix for the charge Q = +1 soliton

or particle from a charge Q = +N unexcited boundary. From this reflection matrix we

use the reflection bootstrap and boundary bootstrap procedures to generate the general

quantum reflection matrix for a charge Q = +n soliton from an excited charge Q = N +m

boundary [18 – 20]. We make various checks to ensure that the original conjecture makes

sense.
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As in the previous work on the quantum CSG boundary theory [8], which covers the

subsection of dressed boundaries with A = 0, it is assumed that the reflection factors are

constructed out of F factors (3.12). The CSG S-matrix (3.11) is defined as a product of

these F factors and since the boundary Yang-Baxter equation relates the reflection matrices

and the S-matrix this assumption has foundation.

The CSG S-matrix is identically the minimal ak−1 S-matrix which is recovered from

the a
(1)
k−1 Affine Toda field theory (ATFT) when the parts with the coupling constant are

omitted. Therefore as in the previous work on the CSG boundary theory we use the

terms of the reflection matrix of the a
(1)
k−1 ATFT [21], which do not include the coupling

constant, as a starting point for the CSG dressed boundary reflection matrix. Using the

block notation (x) = Fx(θ) the terms in the charge Q = +n soliton reflection matrix are

Kbase
n =

n
∏

c=1

(c− 1)(c − k). (4.24)

The matrix for the reflection of a charge Q = +1 soliton from a charge Q = +N unexcited

dressed boundary, which we denote by K
N(0)
1 , should therefore include the factor (1 − k).

This cannot be the whole expression as it does not contain a factor that corresponds to

the known formation of a bound state discussed in the previous section, where a charge

Q = +1 soliton fuses with an unexcited boundary of charge Q = +N . This process occurs

when the incoming soliton has the rapidity θ = iπ
k

(1 + 2N − B) where B = kb
π
− k

2 . This

fusion process indicates the need for block factor (1 + 2N − B) in the minimal choice for

K
N(0)
1 .

Delius and Gandenberger [21] showed that when block factors appear in the pairs

(x)(k − x) then the bootstrap is guaranteed to close. In the previous work [8] charge

conjugation invariance, i.e. K0
1 = K0

−1 was needed. However, in the case of the charged

dressed boundary we do not expect invariance under charge conjugation. It is therefore

not required for the reflection matrix to have its F factors appear in these pairs. In fact

they cannot appear in this way for the charge conjugation symmetry to be broken.

The way forward in this case is to assume that a similar factor to (k − 1 − 2N + B)

does accompany (1 + 2N − B) in K
N(0)
1 and to find the correct factor we check that the

classical limit k → ∞ is correct. Examining the classical reflection factors for a particle

and anti-particle reflecting from the dressed boundary

Rparticle = −(δeθ + ieiA)(δeiA − ieθ)

(δ + ieiAeθ)(δeiAeθ − i)
,

Ranti−particle = −(δ − ieθeiA)(δeiAeθ + i)

(δeiA + ieθ)(δeθ − ieiA)
. (4.25)

These formulae differ from the ones presented in section 2 due to a difference in the pre-

scription in the signs of k and ω. We note that in the A = 0 limit Rparticle = Ranti−particle,

which confirms the charge conjugation symmetry in this case. Similarly the particle reflec-

tion factor from the bound state with these prescriptions is

Rbs
particle =

(1 + ieibeiAeθ)(eiA − ieibeθ)(eia − ieθ)2

(eibeiA − ieθ)(ieiAeθ + eib)(ieiaeθ + 1)2
. (4.26)
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Figure 15: Reflection bootstrap for two Q = +1 solitons fusing into a Q = +2 soliton.

We find that a conjecture for K
N(0)
1 which has the correct classical limit and includes the

pole that corresponds to the known bound state is

K
N(0)
1 (θ) = Kbase

1 (1 + 2N −B)(k +B − 1 + 2N)

= (1 − k)(1 + 2N −B)(k +B − 1 + 2N) . (4.27)

4.2 Reflection bootstrap

We use the reflection bootstrap mechanism from K
N(0)
1 to generate the reflection matrices

for higher charged solitons reflecting from the unexcited boundary, denoted by K
N(0)
n . The

reflection bootstrap uses the integrability of the model to equate the fusion of two solitons

before and after reflection from the boundary. It allows the reflection matrix for the higher

charged soliton to be calculated from known lower charge soliton reflection matrices and

S-matrices. We illustrate the first step in the reflection bootstrap procedure in figure 15,

which gives the relation between a charge Q = +2 and charge Q = +1 CSG soliton

reflecting from the unexcited boundary

K
N(0)
2 (θ) = K

N(0)
1

(

θ − iπ

k

)

K
N(0)
1

(

θ +
iπ

k

)

S1,1(2θ) . (4.28)

It uses the property illustrated in figure 10(a) that the two Q = +1 solitons fuse at

the relative imaginary rapidity 2iπ
k

. Explicitly writing the F factors that appear in the

two K
N(0)
1

Fx

(

θ − i
π

k

)

=
sinh

(

θ
2 + iπ

2k
(x− 1)

)

sinh
(

θ
2 − iπ

2k
(x+ 1)

) , Fx

(

θ + i
π

k

)

=
sinh

(

θ
2 + iπ

2k
(x+ 1)

)

sinh
(

θ
2 − iπ

2k
(x− 1)

) , (4.29)

shows that we can combine them using

Fx

(

θ − i
π

k

)

Fx

(

θ + i
π

k

)

= Fx+1(θ) Fx−1(θ) . (4.30)

Along with the form of the S-matrix

S1,1(2θ) = F0(2θ)F2(2θ) = −(1)(1 − k) , (4.31)

this gives

K
N(0)
2 (θ) = (1− k)(1)(2− k)(2+ 2N −B)(2N −B)(k+B+ 2N)(k+B− 2+ 2N) . (4.32)
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Figure 16: Reflection bootstrap for a Q = +1 and Q = +2 soliton fusing into a Q = +3 soliton.
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Figure 17: Bulk bootstrap relation allowing the S-matrix between charge Q = +1 and Q = +2

solitons to be related to the S-matrix between two Q = +1 solitons.

It is noticed the base factor Kbase
2 appears, allowing it to be rewritten

K
N(0)
2 (θ) = Kbase

2

1
∏

j=0

(2N −B + 2j)(k +B + 2N − 2j) . (4.33)

To find the reflection factors for higher charged solitons we use the fusion process between

higher charged solitons and a charge Q = +1 soliton. For example for the next step to

generate K
N(0)
3 we use the fusion process between a charge Q = +1 and Q = +2 soliton,

illustrated in figure 16. This gives the relation

K
N(0)
3 (θ) = K

N(0)
1

(

θ +
2iπ

k

)

K
N(0)
2

(

θ − iπ

k

)

S1,2

(

2θ +
iπ

k

)

. (4.34)

To find the explicit form of K
N(0)
3 (θ) we use the reflection bootstrap iteratively, namely we

use the equation for K
N(0)
2

K
N(0)
2

(

θ − iπ

k

)

= K
N(0)
1

(

θ − 2iπ

k

)

K
N(0)
1 (θ) S1,1

(

2θ − 2iπ

k

)

(4.35)

and the bulk bootstrap relation, shown in figure 17, which gives the relation

S1,2

(

2θ +
iπ

k

)

= S1,1

(

2θ +
2iπ

k

)

S1,1 (2θ) . (4.36)

We simplify the block factors that appear in K
N(0)
1

(

θ − 2iπ
k

)

K
N(0)
1

(

θ + 2iπ
k

)

using

Fx

(

θ − i
2π

k

)

Fx

(

θ + i
2π

k

)

= Fx+2(θ) Fx−2(θ) , (4.37)
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Figure 18: Boundary bootstrap giving a relation for the reflection factor from the first excited

boundary.

to give the form of K
N(0)
3 (θ)

K
N(0)
3 (θ) = Kbase

3

2
∏

j=0

(2N −B + 2j − 1)(k +B + 2N − 2j + 1) . (4.38)

We continue this procedure to generate the reflection matrix for a charge Q = +n soliton

reflecting from an unexcited boundary with charge Q = +N

KN(0)
n (θ) = Kbase

n

n−1
∏

j=0

(2N −B + 2j + 2 − n)(k +B + 2N − 2j − 2 + n) . (4.39)

We check that the bootstrap closes, namely that

K
N(0)
1 (θ) = K

N(0)
k+1 (θ). (4.40)

This equation is true only for k even, so we shall restrict ourselves to these values of k.

Also as expected, the charge conjugation symmetry is broken

K
N(0)
k−1 (θ) = (1 − k)(−2N +B − k − 1)(1 − 2N −B) = K

N(0)
−1 (θ) . (4.41)

In the classical limit this agrees with the reflection factor for the anti-particle (4.25). We

leave the details of these checks to appendix A.

4.3 Boundary bootstrap

Using the reflection bootstrap we have constructed the quantum reflection matrices for

any charged soliton from the unexcited boundary. Now using the boundary bootstrap

mechanism we generate the reflection matrices which describe the reflection from excited

boundaries. The first step of this process is illustrated in figure 18, which gives the relation

between a charge Q = +1 CSG soliton reflecting from the unexcited boundary and the

charge Q = +1 soliton reflecting from the first excited bound state. Namely

S1,1(θ − θ
N(0,1)
1 ) K

N(0)
1 (θ) S1,1(θ + θ

N(0,1)
1 ) = K

N(1)
1 (θ) , (4.42)
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Figure 19: Boundary bootstrap giving a relation for the reflection factor from the second excited

boundary.

where

θ
N(0,1)
1 =

iπ

k
(1 + 2N −B) , (4.43)

is the imaginary rapidity at which a charge Q = +1 soliton fuses with an unexcited bound-

ary of charge Q = +N (4.14). Noticing that the product of S-matrices can be simplified

S1,1

(

θ +
iπ

k
ψ

)

S1,1

(

θ − iπ

k
ψ

)

= (2 + ψ)(2 − ψ) , (4.44)

then the reflection matrix from the excited boundary is

K
N(1)
1 (θ) = (1 − k)(1 − 2N +B)(k +B − 1 + 2N)(1 + 2N −B)(3 + 2N −B) . (4.45)

In the classical limit this agrees with the particle reflection factor from the bound state (2.24).

In K
N(1)
1 there is a new pole which appears in the similar factor (3 + 2N −B) at

θ
N(1,2)
1 =

iπ

k
(3 + 2N −B) , (4.46)

this agrees with the rapidity required for the next bound state to be formed (4.16) and

therefore we can use this pole to repeat the boundary bootstrap process, illustrated in

figure 19. This gives the relation

S1,1(θ − θ
N(1,2)
1 ) K

N(1)
1 (θ) S1,1(θ + θ

N(1,2)
1 ) = K

N(2)
1 (θ) , (4.47)

which can be solved for the quantum reflection matrix for the Q = +1 soliton from the

second excited bound state

K
N(2)
1 (θ) = (1 − k)(1 − 2N +B)(k +B − 1 + 2N)(3 + 2N −B)(5 + 2N −B) . (4.48)

This again has a new pole, this time in the factor (5+2N−B), which again agrees with the

fusion factor (4.16). At every step a similar new pole appears and we use it to iteratively

apply the boundary bootstrap process. Resulting in the general reflection factor

K
N(m)
1 (θ) = (1−k)(1−2N+B)(k+B−1+2N)(2m−1+2N−B)(2m+1+2N−B) , (4.49)
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which described the scattering of a charge Q = +1 soliton from the charge Q = N +m mth

excited bound state. The charge of the boundary has Zk symmetry which is exhibited by

this formula since

K
(N(k))
1 (θ) = K

N(0)
1 (θ) . (4.50)

The final stage of the bootstrap process to complete the reflection matrices for all

possible soliton-boundary reflections is to repeat the reflection bootstrap process starting

with K
N(m)
1 (4.49) for any m. The first step is the relation

K
N(m)
2 (θ) = K

N(m)
1

(

θ − iπ

k

)

K
N(m)
1

(

θ +
iπ

k

)

S1,1(2θ) , (4.51)

which gives

K
N(m)
2 (θ) = Kbase

2 A
N(m)
2 B

N(m)
2 C

N(m)
2 , (4.52)

where

A
N(m)
2 = (k +B + 2N)(k +B + 2N − 2) ,

B
N(m)
2 = (2 − 2N +B)(−2N +B) ,

C
N(m)
2 = (2m+ 2N −B − 2)(2m + 2N −B)2(2m+ 2N −B + 2) .

(4.53)

Repeating gives

K
N(m)
3 (θ) = Kbase

3 A
N(m)
3 B

N(m)
3 C

N(m)
3 , (4.54)

where

A
N(m)
3 = (k +B + 2N + 1)(k +B + 2N − 1)(k +B + 2N − 3) ,

B
N(m)
3 = (3 − 2N +B)(1 − 2N +B)(−1 − 2N +B) ,

C
N(m)
3 = (2m+ 2N −B − 3)(2m+ 2N −B − 1)2

x (2m+ 2N −B + 1)2(2m+ 2N −B + 3) . (4.55)

We continue this process to give the final general formula for the the quantum reflection

matrix for a charge Q = +n soliton from the mth excited boundary with charge Q = N+m

KN(m)
n (θ) = Kbase

n

n−1
∏

j=0

(n− 2j − 2N +B)(k +B + 2N − n+ 2j)

x (2m− n+ 2N −B)(2m+ n+ 2N −B)

x
n−1
∏

j=1

(2m− n+ 2j + 2N −B)2 . (4.56)

From a conjectured form of K
N(0)
1 , the reflection factor for the CSG particle from a

charge Q = +N unexcited boundary, we have used the bootstrap program to generate the

general K
N(m)
n , the reflection factor for a charge Q = +n soliton from the mth excited

boundary with charge Q = N + m. We have checked that our results agree with known

classical formulae and that the bootstrap closes both on the charge of the reflecting soliton

and the charge of the boundary.
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5. Physical strip pole analysis

In this section we perform a preliminary analysis of the poles in the physical strip that

appear in the dressed boundary reflection matrices. We first study some specific examples

to find out which poles lie in the physical strip 0 < Im(θ) < π
2 . The examples we use

are for values of A and b that we analysed the classical bound state solution in section 2,

namely A = 0 , b = π
3 and A = π

8 , b = π
3 . We use k = 100 and k = 96 respectively.

5.1 Example I: A = 0 , b = π
3 , k = 100

The unexcited boundary has charge Q = 0 and the poles in K
N(0)
1 (4.27) appear at the

rapidities

(1 − k) −99πi

(1 + 2N −B)
53

300
πi

(k +B − 1 + 2N)
247

300
πi . (5.1)

There is one physical pole (1 + 2N −B), which is the pole we implemented the bootstrap

procedure on. The excited boundaries generated by fusing particles to this unexcited

boundary have the reflection matrices K
N(m)
1 (4.49), which has poles at the rapidities

(1 − k) −99πi

(1 − 2N +B) − 47

300
πi

(k +B − 1 + 2N)
247

300
πi

(2m+ 1 + 2N −B)
53 + 6m

300
πi

(2m− 1 + 2N −B)
47 + 6m

300
πi . (5.2)

The pole associated with the factor (2m+ 1 + 2N −B) remains in the physical strip until

m = 17, where the pole is at the rapidity 155
300πi. The pole that is used for the bootstrap

(2m−1+2N−B) remains in the next higher charge boundary reflection factor, in the next

section we show that the existence of this physical pole can be explained by a Coleman-

Thun process. Recalling that

a0 = A+ b =
π

3
, am = A+ b− 2πm

k
=
π

3
− mπ

50
, (5.3)

then explicitly a16 = 2π
150 , a17 = − π

150 . Therefore the charge parameter of the bound

soliton for the final bound state actually lies past the maximum of the energy of the bound

states at a = 0 shown in figure 6(a). However due to the quantisation of a the energy of

boundary N(17) is higher than N(16)

EN(16) =
k
√
β

π
cos

(

2π

150

)

, EN(17) =
k
√
β

π
cos

( π

150

)

. (5.4)
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We note that if the pole in K
N(17)
1 was still physical then the next bound state would have

reduced energy, so the bootstrap procedure is halted when the highest energy bound state

is reached.

5.2 Example II: A = π
8 , b = π

3 , k = 96

The unexcited boundary has charge Q = −6 and the poles in K
N(0)
1 (4.27) appear at the

rapidities

(1 − k) −95πi

(1 + 2N −B)
5

96
πi

(k +B − 1 + 2N)
67

96
πi , (5.5)

so again there is one physical pole (1+2N−B). The excited boundaries generated by fusing

particles to this unexcited boundary have the reflection matrices K
N(m)
1 (4.49), which has

poles at the rapidities

(1 − k) −95πi

(1 − 2N +B) − 3

96
πi

(k +B − 1 + 2N)
67

96
πi

(2m+ 1 + 2N −B)
5 + 2m

96
πi

(2m− 1 + 2N −B)
3 + 2m

96
πi . (5.6)

The pole associated with the factor (2m+ 1 + 2N −B) remains in the physical strip until

m = 22, where the pole is at the rapidity 49
96πi. Recalling that

a0 = A+ b =
11π

24
, am = A+ b− 2πm

k
=

11π

24
− mπ

48
, (5.7)

then explicitly a21 = π
48 , a22 = 0. This time the charge parameter of the bound soliton

for the final bound state coincides with the maximum of the energy of the bound states

at a = 0 shown in figure 7(a). Again the bootstrap procedure is halted when the highest

energy bound state is reached. These two examples show for parameter choices such as

these we correctly implemented the bootstrap methods, albeit for a finite number of steps.

In the next section we explain the processes behind the physical poles.

5.3 Coleman-Thun processes

In this section we present the Coleman-Thun type processes that explain the physical poles

in the reflection matrices. Coleman-Thun processes were first used in the case of boundary

reflection matrices by Dorey et al. [22] and subsequently in [21, 23 – 26]. We limit ourselves

to ranges of the parameters where the factors of the form (x+2N−B) and the base factors

are the only ones in the physical strip, as in the examples shown above. We note that these
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Figure 20: Process that explains the physical pole (1 + 2N −B) in K
N(0)
1 .
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Figure 21: Processes that explain the three physical poles in K
N(0)
2 .

are the poles that were used in the bootstrap, and are related to the rapidity of the fusing

soliton needed to step up the E+
bs energy curve, while a decreases from A+ b. At the end

of the section we comment on the range of parameters for which this is the case and also

on whether any of the other poles can be physical.

Let us begin our analysis with the pole in the physical strip that appears in K
N(0)
1 ,

namely (1 + 2N − B). As already discussed this pole corresponds to the fusion of an

incoming particle with the unexcited boundary. Figure 20 shows the reflection process

where the bound state forms and then decays re-emitting the Q = +1 soliton. The label
iπ
k

(1 + 2N −B) indicates the incoming rapidity at which the pole is present.

The reflection factor for a Q = +2 soliton reflecting from a unexcited boundary (4.32)

has three such poles which for certain parameter choices are in the physical strip

(1)(2 + 2N −B)(2N −B) . (5.8)

These poles correspond to the processes shown in figure 21. The pole in factor (2+2N−B)

is due to diagram 21(a) where the incoming soliton fuses with the boundary, forming a

bound state before this excited state decays. The pole in (1) which is in the base factor,

in this case Kbase
2 , is due to a process in which a boundary bound state is not formed.

This is a fixed pole as it does not depend on the boundary parameters and arises from

the triangular diagram shown in 21(b) where the internal lines are on shell. It shows
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Figure 22: Processes that explain the three physical poles in K
N(0)
n .

the incoming Q = +2 soliton decaying and recombining after one of the resultant charge

Q = +1 solitons has reflected from the boundary. The final pole is from the factor (2N−B)

which is due to the process shown in figure 21(c), this is a mixture of the two previous

processes. The incoming soliton decays before one of the resultant Q = +1 solitons fuses

with the boundary to form the boundary bound state N(1), the other resultant soliton

reflects from the boundary before the bound state decays re-emitting the soliton which

fuses with the reflected soliton.

Increasing the incoming soliton to any charge Q = +n the poles of the considered

form that could be in the physical strip in K
N(0)
n (4.39) arise from diagrams of the same

structure as just described. The pole in the factor (n + 2N − B) comes from the process

in figure 22(a) and the poles in (2a − n + 2N −B) for a = 1 → n − 1 are associated with

the process in figure 22(b). There are n − 1 physical poles in Kbase
n which arise due to

triangular diagrams shown in figure 22(c) with a = 1 → n− 1.

The three types of diagrams described above are all that is needed to explain the poles

in the reflection matrix for any charged soliton reflecting from a charge Q = +N unexcited

dressed boundary. We find that is not the case for the reflection from excited boundaries

and more diagrams are needed.

Considering the reflection matrix K
N(m)
1 for the reflection of a charge Q = +1 soliton

from an excited boundary with charge Q = N +m (4.49), we find that it has poles in the

factors (2m − 1 + 2N − B) , (2m + 1 + 2N − B). The pole in (2m + 1 + 2N − B) arises

because of the formation of the usual higher bound state, shown in figure 23(a). The pole

in (2m − 1 + 2N − B) is because the excited defect decays before it becomes re-excited,

shown in 23(b). For this process to occur the excitation state of the original boundary has

to be greater or equal to the charge of the scattering soliton, in this example for a Q = +1

soliton we need m > 0.

We continue to analyse the reflection factor for any charged soliton Q = +n reflecting

from an excited boundary K
N(m)
n (4.56). It has n− 1 poles that appear in the Kbase

n factor

which are due to the triangular diagrams, shown in figure 22(c) with a = 1 → n− 1. The

pole in the factor (2m + n + 2N − B) comes from the standard process of the formation

of a higher bound state illustrated in figure 24(a). Figure 24(b) shows the process that
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Figure 23: Processes that explain the three physical poles in K
N(m)
1 .
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Figure 24: Processes that explain two of the physical poles in K
N(m)
n , namely the poles in the

factors (2m+ n+ 2N −B) and (2m− n+ 2N −B).

corresponds to the pole in (2m−n+2N−B), where the boundary decays before fusing with

the incoming soliton to reform the original excited boundary. We note that this process

only occurs for n ≤ m.

The double poles from the factors (2m−n+2j+2N −B)2 correspond to two different

processes. All n−1 poles arise due to the process shown in figure 25(a) with a = 1 → n−1

as long as n ≥ 1. Whereas r poles arise due to the new process shown in figure 25(b) where

a = 1 → r and r is the lower value of m and n − 1. In this process the excited boundary

decays by emitting a charged soliton which fuses with the reflected soliton, a remnant of

the decayed incoming soliton. We note that only when m > n − 1 is there the maximum

number of poles. For m ≤ n − 1 the poles that are not explained by the restrictions on

processes in figures 24(a), 25(b) cancel with zeroes in the product
∏n−1

j=0 (n− 2j− 2N +B).

We have described Coleman-Thun processes that explain all the poles of the form

(x + 2N − B) that appear the various reflection matrices. As we saw with examples I

and II the poles that we bootstrapped on do not stay in the physical strip and become

unphysical when the bound state with maximum energy has been reached. At this point

the bootstrap procedure is halted after a finite number of steps, e.g. m = 17 in example

I. In the examples only the reflection matrix for a Q = +1 soliton reflecting from the

boundary was considered, we revisit example I to investigate whether a similar pattern

– 30 –



J
H
E
P
1
1
(
2
0
0
8
)
0
3
8

� �

������

����

����

���	

���	

�

	
�

	
�

�

�π������
	���
���

�π�����
	���
���

�π��������
���

(a)

� �

������

����

����

��	


��	


�


��


��

�

�π���	
���	������

�π�����	������

�π���	
��	������

(b)

Figure 25: Processes that explain the remaining physical poles in K
N(m)
n , namely the double poles

in the factor (2m− n+ 2j + 2N −B)2.

exists for higher charged solitons.

5.4 Example I revisited: A = 0 , b = π
3 , k = 100

The pole that we bootstrapped on in the reflection matrix for a Q = n soliton from an

unexcited boundary (4.39) appears in the factor (2N − B + n), this corresponds to the

formation of a charge Q = N + n bound state and has the value

θ =
iπ

300
(3n + 50) , (5.9)

which is physical for 1 ≤ n ≤ 33. Therefore a soliton with charge greater than Q =

33 cannot fuse with this unexcited boundary to form a bound state. Continuing to the

reflection matrices (4.56) which describe a charge Q = n soliton scattering with an excited

boundary of charge Q = N + m, the pole we bootstrapped on appears in the factor

(2N −B+2m+n) which corresponds to the formation of a higher bound state with charge

Q = N +m+ n and has the value

θ =
iπ

300
(3n+ 6m+ 50) , (5.10)

which is physical for 6m ≤ 100 − 3n. This limits to the original example I when n = 1

and the pole is physical until m = 17. For the scattering of the charge Q = 2 soliton the

last boundary it can fuse to is the 15th excited state, since from the 16th excited state

the resultant boundary has lower energy. Similarly a charge Q = +3 soliton can fuse to

the 15th excited state also. These can be deduced by looking at the charge parameter for

excited boundaries with different charges and determining whether the fusion of a certain

charged soliton will create a higher or lower energy state.

We have shown for this example the bootstrap procedure that we implemented is valid

for a finite number of steps depending on the charge of the scattering soliton. In fact

the pole we started the bootstrap procedure on in (4.27) is the only physical pole in this

reflection matrix when

π

k
≤ A+ b ≤ π

2
− π

k
, A < b− π

k
, k ≥ 4 . (5.11)
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For these range of parameters the bootstrap procedure we implemented and pole analysis

is valid, at least for a finite number of steps. The bound states accessed by the bootstrap

procedure are all related to the E+
bs energy curve created by fusing solitons to the unexcited

boundary with a = A+ b. We will now briefly examine an example which falls outside of

these parameter constraints.

5.5 Example III: A = π
4 , b = π

8 , k = 96

The unexcited boundary has charge Q = −12 and the poles in K
N(0)
1 (4.27) appear at the

rapidities

(1 − k) −95πi

(1 + 2N −B)
13

96
πi

(k +B − 1 + 2N)
35

96
πi , (5.12)

where two poles lie in the physical strip (1+2N−B) and (k+B−1+2N). This circumstance

lies outside all the previous analysis. The residues of these poles have opposite signs, the

pole in the factor (1 + 2N −B) has the residue 1.65 i and (k − 1 + 2N +B) −3.58 i. This

second physical pole is at the rapidity for the emission process, shown in figure 14(a), and

possibly is explained by a crossed process because it is a remnant pole from the lower

energy boundary reflection matrix K
N(−1)
1 .

If we consider our bootstrap procedure then the excited boundaries generated have the

reflection matrices K
N(m)
1 (4.49), which has poles at the rapidities

(1 − k) −95πi

(1 − 2N +B) −11

96
πi

(k +B − 1 + 2N)
35

96
πi

(2m+ 1 + 2N −B)
11 + 2m

96
πi

(2m− 1 + 2N −B)
13 + 2m

96
πi . (5.13)

where the pole from the factor (2m− 1+ 2N −B) stays in the physical strip until m = 18.

This seems similar to the other examples but the charge parameter of the bound soliton has

the value am = 0, which lies outside of the classical region where bound states exist
[

π
8 ,

3π
8

]

.

In fact am moves outside the classical region at m = 13. This property where the pole stays

physical outside the allowed classical region is not explained by our analysis. Examining

the residues of the poles we find that there are positive imaginary for m = 0 → 11 but

becomes negative imaginary for m = 12 the exact value which if bootstrapped on would

take a outside the classical range. So we have found that the poles we have not been able

to explain, both have the feature that their residue is negative imaginary, while all the

poles we have explained by the formation of bound states or Coleman-Thun processes have

a positive imaginary residue.
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6. Summary and discussion

In this paper we have built on the work in [1] where integrable CSG defect and dressed

boundary theories were constructed. We reviewed aspects of the quantum CSG theory,

showing that the charge of the CSG soliton is quantised. The quantum S-matrix was

presented and the existence of poles in the S-matrix due to the formation of higher charge

bound states and Coleman-Thun processes was explained.

We comprehensively analysed the classical bound states, discovering that there are

two limits in which the bound state becomes an unexcited boundary. Both where the

bound soliton is positioned at right infinity, but with different charge parameters a = A+b

or A = A − b. Using the Bohr-Sommerfeld quantisation condition we showed that the

charge of the boundary bound states is quantised and through the fact that the unexcited

boundary appears as a limit of the bound states, all the boundaries in the quantum theory

have integer charge.

We calculated the semi-classical energy difference between states differing by one unit

of charge and showed that the energy difference is exactly that of a soliton with specific

rapidity. This discovery prompted the analysis of soliton-boundary fusion processes and

we found that a charge Q = +1 soliton can fuse with an unexcited boundary to form a

excited bound state at the rapidity in agreement with the semi-classical energy difference.

This fusion process can be repeated with the effect on the bound soliton of altering its

charge parameter a→ a− 2π
k

.

Using the existence of these bound states we conjectured the form of the quantum

reflection matrix for a charge Q = +1 soliton from the unexcited boundaryK
N(0)
1 , checking

that the conjectured form is in agreement with the classical limit. From K
N(0)
1 we used the

reflection bootstrap procedure to generate reflection matrices for any charged soliton from

the unexcited boundary K
N(0)
n , checking the classical limit for the anti-particle and that

it displayed the charge periodicity property of the soliton. We note that we found that

this was only possible for k even. To complete the construction of the remaining reflection

matrices which describe the the scattering of a Q = +1 soliton from an excited boundary,

we used the boundary bootstrap and then to generalise to any charged soliton repeated the

reflection bootstrap. We check that the factors are in agreement with the reflection from

the classical bound state and that the periodicity of the boundary charge is preserved.

Finally we completed a preliminary analysis of the physical poles that appear in the

various matrices. For a range of the parameters we explain the physical poles either by the

formation of higher bound states by the fusion process described above or by Coleman-

Thun processes. The examples we studied showed that the bootstrap method is only valid

for a finite number of steps until the bound state of highest energy is reached, at this point

the pole we bootstrapped on becomes unphysical. Further examples showed that there

exists physical poles with negative residues that we have not explained. Further analysis

is required to complete the picture and to better understand the bound states present on

the E−
bs energy curve.
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A. Closure of reflection bootstrap

In this appendix we check the closure of the reflection bootstrap procedure implemented

in section 4.2. We found the reflection factor for a charge Q = n soliton from a charge

Q = N unexcited boundary to be

K(N(0))
n (θ) = Kbase

n

n−1
∏

j=0

(2N −B + 2j + 2 − n)(k +B + 2N − 2j − 2 + n) . (A.1)

To check that this formula closes means to check that

K
(N(0))
1 (θ) = K

(N(0))
k+1 (θ) , (A.2)

which is checking that the reflection factors show the property that the soliton’s charge is

periodic. First using the crossing symmetry relation

K1(θ) K−1(θ + iπ) = S1,1(2θ) , (A.3)

implies

K−1(θ + iπ) = −(1)(1 − k)(k − 1)(−1 − 2N +B)(1 − 2N − k −B) , (A.4)

which becomes

K−1(θ) = (1 − k)(k − 1 − 2N +B)(1 − 2N −B) . (A.5)

This is promising, as it has the correct pole (1 − 2N − B) for the known bound state

and limits to the classical reflection factor for the anti-particle. To show closure we need

Kk−1(θ) to give the same result. First recall Kbase
1 = (1 − k) and

Kbase
k−1 = (1 − k)(2)(2 − k)(3)(3 − k) . . . (k − 3)(−2)(k − 2)(−1), (A.6)

using (x)(−x) = 1 shows for k even Kbase
k−1 = (1 − k). To check the other factors in

K
(N(0))
k−1 (θ) = Kbase

k−1

k−2
∏

j=0

(2N −B + 2j + 3 − k)(B + 2N − 2j − 3), (A.7)

we write out terms in the product

j factor j factor

0 (2N −B + 3 − k)(B + 2N − 3) k − 2 (2N −B + k − 1)(B + 2N + 1)

1 (2N −B + 5 − k)(B + 2N − 5) k − 3 (2N −B + k − 3)(B + 2N + 2)
...

...
k
2 − 3 (2N −B − 3)(−k +B + 2N + 3) k

2 + 1 (2N −B + 5)(−k +B + 2N − 5)
k
2 − 2 (2N −B − 1)(−k +B + 2N + 1) k

2 (2N −B + 3)(−k +B +N − 3)
k
2 − 1 (2N −B + 1)(−k +B + 2N − 1)

,
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reordering these terms

factor factor

(2N +B − 3)(2N −B + 3) (2N −B + 1)

(2N +B − 5)(2N −B + 5) (2N +B + 1)(2N −B − 1)

(2N +B − 7)(2N −B + 7) (2N +B + 3)(2N −B − 3)
...

...

(2N +B − k + 3)(2N −B + k − 3) (2N +B + k − 7)(2N −B − k + 7)

(2N +B − k + 1)(2N −B + k − 1) (2N +B + k − 5)(2N −B − k + 5)

(2N +B − k − 1) (2N +B + k − 3)(2N −B − k + 3)

,

shows that the terms appear in pairs expect for two terms, using (x)(−x) = 1 allows the

array of terms to be completed and K
(N(0))
k−1 rewritten

K
(N(0))
k−1 (θ) = (1 − k)(−2N +B − k − 1)(1 − 2N −B)

x
k−1
∏

j=0

(2N +B + 1 + 2j)(2N −B + 1 + 2j)

= (1 − k)(−2N +B − k − 1)(1 − 2N −B)

= K
(N(0))
−1 (θ) . (A.8)

The terms in the product cancel as 2N is an even integer and therefore the product as the

form
k−1
∏

j=0

(B + 1 + 2j)(−B − 1 − 2j) = 1 . (A.9)

We have shown that the reflection bootstrap close for k even.
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